
Inventors: Wilson et al. PATENT APPLICATION
Serial No. Navy Case No. 80,172

TITLE OF THE INVENTION

A DISTRIBUTED OBJECT-ORIENTED GEOSPATIAL INFORMATION

DISTRIBUTION SYSTEM AND METHOD THEREOF

10 RELATED APPLICATION

The present application is related to the commonly assigned pending United States

patent application Serial No. 09/448,765 filed on November 24, 1999 entitled "Method and

Apparatus for Building and Maintaining an Object-Oriented Geospatial Database", which is

incorporated by reference herein. This application claims priority from a provisional

15 application, Serial No. (Not Yet Assigned) filed on August 25, 2000, entitled A

DISTRIBUTED OBJECT-ORIENTED GEOSPATIAL INFORMATION DISTRIBUTION

SYSTEM AND METHOD THEREOF", Navy Case No. 80, 172.

20

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to distributing information of an object-oriented database

using object-oriented technology. More particularly, the present invention relates to

distributing and maintaining information of an object-oriented database of geospatial data.

25 Further, the present invention relates to distributing and maintaining information of an object-

oriented database of geospatial data of multiple data types, such as Vector Product Format

(VPF), Raster Product Format (RPF), Text Product Standard (TPS), Environmental Systems

Research Institute, Inc. (ESRI) shape files, Generic Sensor Format (GSF), oceanographic

ASCII text data provided by the Naval Oceanographic Office (NAVOCEANO) and geospatial

30 data with temporal information.

'£«"** mmmmw VBSEffKSD <4

20001109 017

Inventors: Wilson et al. PATENT APPLICATION
Serial No. Navy Case No. 80,172

5 Description of the Related Art

The object-oriented geospatial database (i.e., database including data having spatial

information) described in the pending commonly assigned application referenced herein

implements object-oriented geographic data models of vector mapping data, such as VPF.

Geographic data modeling using object-oriented technology is in contrast to conventional

10 geographic or geospatial databases, which are implemented as "relational" data models or

structures. For example, as discussed in the pending commonly assigned application, in a

complex relational database model of vector mapping data, such as VPF provided by the

National Imagery and Mapping Agency (NIMA), the database model is represented as

"databases", each "database" containing one or more "libraries" with associated "coverages or

15 themes", and "features" associates with each "coverage or theme". In particular, the

"relational" data model paradigm typically requires that the "coverage", "features", and

topological data reside in many tables that must be queried upon every request for information

from the database. Because of the number of tables involved, maintaining referential integrity

of the VPF database upon an update is difficult. This difficulty arises because the VPF relies

20 on data residing within multiple specialized tables on multiple levels of the VPF relational

database. Further, since viewing, query and manipulation of each geospatial data of a different

format typically requires corresponding software, integration of the geospatial data of different

formats becomes difficult at best.

Further, as described in the pending commonly assigned application, in contrast to

25 relational database structures storing geospatial data, an object-oriented data structure storing

geospatial data, topological and other spatial relationships reside in linked objects, and updates

to the data can be handled more simply and directly. The object-oriented paradigm properties

of identity, encapsulation, inheritance, and polymorphism, overcome the problems associated

with existing mechanisms for querying, updating, and translating geospatial data, such as VPF

30 data, by providing a geospatial information distribution system that permits easy and complete

updating of VPF data, more complex queries of VPF data, and direct exporting of VPF data

-2-

Inventors: Wilson et al. PATENT APPLICATION
Serial No. Navy Case No. 80,172

5 from the object-oriented database structure into a relational database structure. In particular,

the object-oriented paradigm accommodates data-driven (i.e., data structure of data does not

have to be known prior to query for information) queries, constrained query, and nested or

complex queries. Further, the object-oriented paradigm also permits easy use of data of

differing formats and structures within an integrated geospatial information system. In

10 particular, existing data in VPF, RPF, and TPS files are incorporated onto a single, object-

oriented platform for access.

A characteristic of a traditional geographical information system (GIS) based upon the

"relational" database structure, is that a user's interaction with data via a user interface is at

visual level. For example, the interaction between a user and a map display is only at visual

15 level when zooming. In particular, queries in such traditional GIS are considered "pre-

formatted" requests. This characteristic frustrates easy distribution and access to continuously

updated complex data having spatial information and temporal information.

Further, generally, users have to utilize many software applications on their local

computer to access and display mapping data of multiple data types. Typically, data

20 distribution in such systems is in the form of CD-ROM or other media, and would" often take

days to be distributed to user. For example, data associated with an area of interest (AOI)

would be located in several different places (i.e., there is not a single source that users could,

access to obtain all mapping data available for the AOI). Although, efforts have been made to

provide retrieval and viewing of mapping data over the World Wide Web (WWW) these

25 applications are limited in the data types that they can display, and in the availability of data

associated with the display. In particular, regarding accessing geospatial databases, traditional

systems that use removable storage media replace the existing database on the removable

storage media with updated database and distribute the updated database to users. Further, a

separate software application or commercial off the shelf software package, such as a GIS

30 software package (e.g., ArcView by Environmental Systems Research Institute, Inc.,

Redlands, California) customized for or compatible with the database is executed on the user's

-3-

Inventors: Wilson et al. PATENT APPLICATION
Serial No. Navy Case No. 80,172

5 or local computer (i.e., client computer) to access the database. Such traditional systems may

also be implemented over the Internet or the WWW. Similar to the counterpart non-Internet

implementations, the database is stored as a library on a server computer connected to the

Internet and the library is distributed (i.e., downloaded by the user or local computer using,

for example, File Transfer Protocol) to the user's or local computer for access using the

10 separate GIS software package executing on the local computer. Therefore, these traditional

systems involve two steps of loading or downloading data or database to the local computer

from the remote computer or removable storage media (e.g., CD-ROM) and then loading a

separate software application in the local computer to access the data.

The use of geographic data is becoming pervasive across many disciplines. At the same

15 time, end users are becoming increasingly dependent upon the web as a source of readily

available, easily accessible information. Accordingly, in view of these two factors there is a

need for development of systems capable of immediate and efficient distribution and access to

complex data having spatial and temporal information (i.e., geospatial data).

20 SUMMARY OF THE INVENTION

An object of the invention is to provide a distributed object-oriented geospatial database

system and method thereof over a client/server network.

Another object of the invention is to provide a distributed object-oriented geospatial

database system and method thereof over the Internet using web-based technology to perform

25 data-driven queries, such as retrieving, viewing and updating, geospatial data of the object-

oriented geospatial database, such as vector, raster, hypertext and multimedia data, as well as

remote updating of vector data.

Another object of the invention is to provide a distributed object-oriented geospatial

database system and method thereof over a client/server network supporting multiple data

30 types or formats of ESRI shape file, GSF, oceanographic ASCII text data by NAVOCEANO

and geospatial data with temporal information.

4

Inventors: Wilson et al. PATENT APPLICATION
Serial No. Navy Case No. 80,172

5 Another object of the invention is to provide a distributed object-oriented geospatial

database system and method thereof over a client/server network supporting 3D display of

geospatial data.

Yet another object of the invention is to provide a distributed objected-oriented

geospatial database system in a heterogeneous object-oriented development and integration

10 environment using the Common Object Request Broker Architecture (CORBA).

■ The above objects are attained in a networked computer system environment by

designing object models for the geospatial data, creating an object-oriented database of the

geospatial data using the object models, storing the object-oriented database on a storage unit

connected to the network, specifying an area of interest from a map image or visual image,

15 representing active data objects and displayed on a computer on the network, querying from

the computer over the network data objects in the database associated with the area of interest,

receiving in the computer over the network data objects in the database associated with the area

of interest, and displaying the data objects. In particular, querying involves in response to

performing a single action, querying from the computer over the network data objects in the

20 database associated with the area of interest.

Further, in a networked computer system environment building and maintaining an

object-oriented spatial database from at least two or more data formats by instantiating objects

of the object-oriented database, using at least two of the Vector Product Format (VPF), Raster

Product Format (RPF), Text Product Standard (TPS), Environmental Systems Research

25 Institute (ESRI) shape, Generic Sensor Format (GSF), Naval Oceanographic Office text

(NAVOCEANO), and temporal information databases; initializing spatial and non-spatial

feature data of the object-oriented database; and spatially indexing data among objects from the

at least two VPF, RPF, TPS, ESRI, GSF, NAVOCEANO and temporal information databases

into the single, object-oriented spatial database.

30 Further, computer programs according to the present invention and stored on a

computer-readable media to access in real-time geospatial data over a network, comprise an

-5-

Inventors: Wilson et al. PATENT APPLICATION
Serial No. Navy Case No. 80,172

5 object-oriented database server code section to store data having spatial and temporal

information, a client code section, and an interface code section in communication with the

server code section and the client code section over the network to transmit and receive

messages querying the data. In particular, programming language of the client code section

differs from programming language of the server code section, providing a heterogeneous

10 object-oriented geospatial database system in a networked computer system. Further, the data

includes at least two or more data formats of Vector Product Format (VPF), Raster Product

Format (RPF), Text Product Standard (TPS), Environmental Systems Research Institute shape

format (ESRI), Generic Sensor Format (GSF), and Naval Oceanographic Office text format

(NAVOCEANO).

15 These and other objects and advantages of the invention will become apparent and more

readily appreciated from the following description of the preferred embodiments, taken in

conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

20 Fig. 1 is an illustration of client/server system in which the invention may be

implemented.

Fig. 2 depicts a block diagram of software system to build, access and maintain

information of an object-oriented database of geospatial data of multiple data types in a

standalone or non-networked computer system.

25 Fig. 3 shows the data structure of an object-oriented geospatial database stored in a

storage unit and used in the invention.

Fig. 4A depicts a block diagram of software system according to the invention in the

client/server system in Fig. 1.

Fig. 4B depicts a block diagram of software system according to the invention in the

30 client/server in Fig. 1, which uses a firewall.

Inventors: Wilson et al. PATENT APPLICATION
Serial No. Navy Case No. 80,172

5 Figs. 5A and 5B depict a more detailed block diagram of the software system according

to the invention in the client/server system in Fig. 4A.

Figs. 6A and 6B depict a more detailed block diagram of the software system according

to the invention in the client/server system in Fig. 4B.

Fig. 7 shows a display screen of the system according to the invention for selecting an

10 AOL

Fig. 8 shows another display screen of the system according to the invention for

selecting an AOL

Fig. 9 shows a display screen of the system according to the invention for selecting

active or available data represented as databases, libraries, coverages, and features

15 corresponding to the selected AOI in Figs. 7 or 8.

Fig. 10 shows a display screen of the system according to the invention for displaying

features available for the selected AOI with reference to an available map image associated

with the AOL

Fig. 11 shows a display screen for advanced queries.

20 Fig. 12 shows a display screen for temporal data queries.

Fig. 13 shows a display screen for attribute queries.

Fig. 14 shows a display screen for queries relating to distances between two points

selected on the display screen.

Fig. 14A shows a code section in JAVA to calculate distances between two points

25 selected on the display screen.

Fig. 15 shows a display screen for querying available multimedia relating to the AOL

Fig. 16 shows a display screen relating to raster image display options.

Fig. 17 shows a display screen displaying text features.

Fig. 18A shows a display screen for downloading libraries, coverages or features.

30 Fig. 18B shows a display screen for feature drawing options.

-7-

Inventors: Wilson et al. PATENT APPLICATION
Serial No. Navy Case No. 80,172

5 Fig. 19 is illustrating the flow of operations in the invention to support 3D display of

geospatial data.

Fig. 20 show a class structure to describe in 3D the geospatial data in the object-

oriented geospatial database of the invention.

Fig. 21 show the VPF attributes used in describing in 3D the geospatial data in the

10 object-oriented geospatial database of the invention.

Fig. 22 show mapping of VPF class to VRML class in the object-oriented geospatial

database of the invention.

Fig. 23 is a description of levels of detail for a feature of VPF data as displayed in 3D

in Fig. 24.

15 Fig. 24 is a screen display of a feature of VPF data in 3D.

Fig. 25 is another screen display of a feature VPF data in 3D.

Fig. 26 depicts a block diagram of software system to update the object-oriented

geospatial database of the invention in the client/server system in Fig. 1.

Fig. 27 shows the format of server history log in a local client server or master server

20 in the client/server system in Fig. 1.

Fig. 28 show the format of a client history log in a local client server in the

client/server system in Fig. 1.

Fig. 29 shows the application level protocol between the local client server and another

local client server or master server for receiving available updates from the other local client

25 server or master server (as the case may be) in the client/server system in Fig. 1.

Fig. 30 shows a display screen in the local client server for receiving available updates

from another local client server or master server in the client/server system in Fig. 1.

30 DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the preferred embodiments of the present

-8-

Inventors: Wilson et al. PATENT APPLICATION
Serial No. Navy Case No. 80,172

5 invention, examples of which are illustrated in the accompanying drawings, wherein like

reference numerals refer to like elements throughout. The embodiments are described below

to explain the present invention by referring to the figures.

The database system according to the present invention, uses Internet enabled

technology, such as Web browser technology, and object-oriented technology to provide real-

10 time or interactive remote access to geospatial data over a network (i.e., one step). In

particular, the user in one step can, for example, view the data objects stored in a remote

location (i.e., computer server), without downloading from a remote computer to the local

computer the entire database (or an entire segment of the database) on the local computer and

executing a separate software in the local computer to view the database. Further, in contrast

15 to traditional GIS software, which actually stores data on the local computer (e.g., the

computer's hard drive), the present invention uses a Web-based applet executing on the local

client computer but still resident on the remote server computer. When the browser software

is closed, there is no software resident on the local computer's hard drive (i.e., no data had to

be downloaded to the local computer's hard drive).

20 Therefore, the present invention improves the object-oriented geospatial database

disclosed in the pending commonly assigned application from the memory resident, stand-alone

system and method to a file based distributed object-oriented geospatial database system and

method thereof over a client/server network environment and in particular over the Internet

using web-based capabilities to view geospatial data, such as vector, raster, hypertext and

25 multimedia data, as well as remote updating of vector data. In particular, the object-oriented

geospatial database of the present invention, which is also referred to as the geospatial

information database (GIDB) or the geospatial information distribution system (GIDS), is an

object oriented digital mapping database system implemented over a computer network system

that provides rapid access to multiple mapping data types (i.e., geospatial data) over the

30 computer network system, such as Internet, WWW or Intranet. Mapping data in the present

invention is accessed from the GIDS based on user AOL In particular, in contrast to typical

-9-

Inventors: Wilson et al. PATENT APPLICATION
Serial No. Navy Case No. 80,172

5 systems (e.g., GIS) providing access to mapping data, in the object-oriented geospatial

database (i.e., GIDS) of the present invention, any AOI request activates a portion of the

database associated with the AOI (i.e, data-driven queries) such than an object or many objects

can be accessed in near-real-time or real-time (as the case may be). The GIDS uses a

conventional object-oriented database management system (OODBMS), a conventional

10 interface technology, such as Common Object Request Broker Architecture (CORBA)

technology, and a conventional object oriented programming language, such as the Java

programming language, to provide rapid access to geospatial data over the network. The

GIDS incorporates multiple data types to meet the mapping requirements and needs of users or

a device or computer system requesting mapping information from the GIDS. Further, the

15 distributed object-oriented geospatial database system according to the present invention

supports additional geospatial data formats of ESRI shape files, GSF, oceanographic ASCII

text data provided by the NAVOCEANO, and geospatial data with temporal information. Yet

further, the distributed object-oriented geospatial database system according to the present

invention supports three-dimensional (3D) display of the geospatial data.

20 Figure 1 depicts a block diagram of a network of computer systems of the present

invention configured as clients and servers using a client/server system architecture, such as an

Internet or Intranet. Referring to Figure 1, browser clients 40 (sites 1-n), local client servers

42 (sites 1-m), and master server 44 are conventional computers or devices, such as hand-held

devices, communicating with each other over the networks 46 (networks 1-p) using

25 Transmission Control Protocol/Internet Protocol (TCP/IP). Conventional, storage units

storing information (e.g., hard drives; drives for removable media, such as CD-R, CD-ROM,

DVD; or memory, such as RAM) (not shown), may be connected or be coupled to the

networks 46 or to browser clients 40 (sites 1-n), local client servers 42 (sites 1-m), and master

server 44. Further, conventional display units displaying information, such as images, may be

30 connected or be coupled to the networks 46 or to browser clients 40 (sites 1-n), local client

servers 42 (sites 1-m), and master server 44. Although, an exemplary embodiment of the

-10-

Inventors: Wilson et al. PATENT APPLICATION
Serial No. Navy Case No. 80,172

5 invention as described below is implemented over the Internet or Intranet using TCP/IP

connections to distribute and maintain information of an object-oriented database of geospatial

data of multiple data types, such as VPF, RPF, TPS, ESRI shape files, GSF, oceanographic

ASCII text data provided by NAVOCEANO and geospatial data with temporal information,

the invention is not limited to use with any particular type of network, computer system or

10 network communication protocol.

, Figure 2, illustrates a diagram of software system to build, access and maintain

information of an object-oriented database of geospatial data of multiple data types in a

standalone or non-networked master server computer 5G. The master server computer 50 is a

computer associated with the networked master server computer 44. The present invention is

15 directed to a file based object-oriented database of geospatial data of multiple data types in a

standalone or non-networked master server and a distributed object-oriented geospatial

database system and method thereof over a client/server network environment and in particular

over the Internet using web-based capabilities to view (i.e., query) geospatial data, such as

vector, raster, hypertext and multimedia data, as well as remote updating of vector data.

20 An introduction is provided to software system components of the object-oriented

geospatial database. The object-oriented geospatial database system of the invention, which is

also referred to as the geospatial information database (GIDB) or the geospatial information

distribution system (GIDS), has a client and server function architecture. GIDS is an object

oriented digital mapping database that provides access to mapping data over computer network

25 systems, such as Internet, World Wide Web (WWW) or Intranet. As shown in Figure 2, the

GIDS is composed of an object-oriented database server component or module 52a, interface

component 54 and client component or module 56 communicating with the server component

52a via or through the interface component 54. The database server 52a may be implemented

using a conventional object server. In a preferred embodiment, the database server 52a is

30 implemented using GemStone/S application server for Smalltalk (GemStone) by GemStone

Systems, Inc., Beaverton, Oregon, which is a commercial-off-the-shelf object-oriented

-11-

Inventors: Wilson et al. PATENT APPLICATION
Serial No. Navy Case No. 80,172

5 database management system (OODBMS) (i.e., object server) that stores, manipulates, and

processes objects referenced by client modules, such as client module 56. In particular,

GemStone is based on Smalltalk, providing a Smalltalk server development environment.

Further, client module 56 may be a Smalltalk client or a Web-based client applet, such as Java

client, which will be described in more detail below. The OODBMS allows expansion of the

10 GIDS to support world-wide database access driven by area of interest (AOI) queries.

Therefore, an AOI may be requested, for example, by a user, and the OODBMS allows a

portion of the database associated with the AOI to become active such that an object or many

objects can be accessed in near-real-time or real-time (as the case may be). The data is

permanently stored as objects in the OODBMS for future access. AOI queries will be described

15 in more detail below. The database server 52a includes two functional modules, one to store

geospatial data, including any non-spatial data, and another module to manipulate or process

the geospatial data. Based on the request from the client 56, the GemStone server 52a searches

and retrieves only those objects that meet the requested criteria. Data search for retrieval is

performed mostly on the server for any client, such as client 56, because GemStone is an

20 intelligent object server, storing, maintaining and referencing objects by name. Therefore, an

object can be searched and retrieved by specifying the object name. When displaying a

digitized map or image of a region, typical GIS relational database servers fetch at a page level

associated with the digitized map or image of the geographic region. However, sometimes the

exact content of the page may not be explicitly known by the GIS relational database servers.

25 In contrast, in an object-based server system, such as GemStone server 52a, contents of a page

can be stored and retrieved at an individual object level. A processing to determine what is on

the page can take place by the server rather than by the client.

Figure 3 shows the data structure of the database server 52a. In particular, the server

52a maintains vector mapping data, such as VPF data, by providing entry points for the client

30 56 at the VPFDatabase class level. VPFDatabase class is the superset of all VPF data.

VPFDatabase class has a class variable or a global dictionary called "databases" that contains

-12-

Inventors: Wilson et al. PATENT APPLICATION
Serial No. Navy Case No. 80,172

5 all instances of the VPFDatabase class. A root entry to any "feature" access begins with the

"databases" of VPFDatabase class.

The VPF data has a hierarchical structure. The "database" is used to group a set of

data that is used for a specific purpose, e.g., Digital Nautical Chart (DNC) for navigation.

The Database class contains a collection of "libraries". A "library" is used to group those

10 "features" that are collected at a certain scale over a certain region. There may be some

overlap or complete containment of one "library" into another. However, each "library" is

unique based on the region and scale. Each "library" subsequently contains a collection of

"coverages", where each "coverage" contains those "features" that are related by a common

theme, e.g., transportation or cultural. A "database", "library" and "coverage (i.e., theme)"

15 triad, represented as VPFDatabase, VPFLibrary, and VPFCoverage classes uniquely identifies

the "feature". The "feature" is defined at the "coverage" level. Due to tabular storage

constraints, VPF data structure groups data yet at another layer, "tile". Each "tile" consists of

some geographic extent in a minute by minute or a degree by degree manner. In particular,

Figure 3 shows an example of a VMAAWE "database" having a collection of "libraries" such

20 as Presidio, Oak Knoll, etc. A Monterey "library" consists of "coverages" or "themes" such

as population, transportation, etc.

The server uses the "coverage" as the minimal grouping level for "features" or

"objects". Every instance of the VPFCoverage has an instance of a dictionary collection called

covQuad (not shown in Figure 3). A covQuad maintains all instances of a

25 VPFSpatialDataManager for the "coverage". The VPFSpatialDataManager class represents a

spatial indexing scheme for organizing or relating information or spatial data of differing data

formats together. The GIDS uses a quadtree spatial indexing scheme to provide a hierarchical

clustering of data based on the geographic area. The quadtree recursively divides an area into

quadrants, each of which is called a quadcell. In the GIDS, the class named

30 VPFSpatialDataManager is created to represent a quadtree-indexing scheme. All spatial

"objects" or "features" are stored and indexed in the quadtree. An insertion of an "object"

-13-

Docket No. 929.1102

5 into the quadtree is based on a bounding box of the "object". A quadcell that will minimally

contain the bounding box of the "object" will be selected to store the object.

The VPF data has three types of "features", including point, line and area (polygon).

For efficient and faster access and retrieval, each "feature" type has a unique instance of a

quadtree, i.e., there are three instances of VPFSpatialDataManager class. Therefore, a

10 covQuad will have three instances of VPFSpatialDataManager keyed by the feature type.

Any data access and retrieval (i.e., query) from the server 52a begins by specifying the

"database", "library" and "coverage", typically through a terminal (e.g., browser client

computer or graphical user interface 40) and electing a query transaction. A "feature"

retrieval (which will be described in more detail below) may specify a part of an area or an

15 Area of Interest (AOI) by specifying a geographic extent or the entire area of the "database"

and "library". This request is sent to the appropriate instance of VPFSpatialDataManager for

actual "feature" retrieval. Therefore, the object-oriented database server 52a accommodates

data-driven simple queries, constrained queries, and nested or complex queries of geospatial

data, including non-spatial data, by the client 56.

20 Next, referencing Figure 2, the interface to database server 52a in master server

computer 50 will be described. A conventional interface system (i.e., client) maybe used to

query, retrieve and update objects in database server 52a. In one embodiment, a Smalltalk

interface system (i.e., Smalltalk client) is used, such as GemBuilder for Smalltalk54, which is

a commercial-off-the-shelf product. In particular, GemBuilder for Smalltalk 54 is an interface

25 between client 56 (i.e., Smalltalk AOI client) and GemStone database server 52a (i.e.,

Smalltalk server). In a preferred embodiment, which will be described below, an interface

system observing CORBA specification or architecture is used. GemBuilder for Smalltalk also

maintains its own object names. To establish a connection between Smalltalk AOI client 56

and GemStone 52a, a naming convention of each object must be resolved via a narning

30 interface. In other words, client 56 and server 52a must have an agreement on how to

reference an object by name. GemBuilder for Smalltalk 54 provides those classes (i.e..

-14-

Docket No. 929.1102

5 naming interface) that institute a convention for referencing same objects between Smalltalk

AOI client 56 and GemStone 52a. For this reason, GemBuilder for Smalltalk 54 requires some

knowledge of the database design and implementation and the level of required detail is client

dependent. In particular, Smalltalk AOI client 56 connects to object server 52a through

GemBuilder for Smalltalk 54. The client 56 mainly populates, maintains, updates and exports

10 data. The client 56 is tightly-coupled to object server's 52a data design, i.e., class definition,

class states and behaviors. A similar, if not the same, class definition is used between object

server 52a and Smalltalk AOI client 56 so that client 56 closely replicates object server's 52a

data design. Due to the data encapsulation property, a reference to an object implies a

reference to a self contained object. For those objects that are maintained and managed by

15 object server 52a, a self-contained object can consist of a large web of references to other

objects, e.g., pointers. Since an object referenced by Smalltalk AOI client 56 is

self-contained, client 56 requests object server 52a to mainly search and return objects. In

most cases, client 56 then process the data on the client side. Therefore, client 56 expects

from the object server 52a those parts that are needed to solve and derive the solution. Thus,

20 Smalltalk AOI clients 56 can be considered as "fat clients," because the implementation details

are replicated on the clients, adding storage requirement. They are expected to process the

information retrieved from the object server 52a.

Referencing Figures 4A and 4B, software system to interface with the database server

52a in master server computer 44 over a network will be described. An interface system

25 observing CORBA specification or architecture to interface with a Smalltalk object-oriented

database server provides a heterogeneous development and integration environment. As shown

in Figure 4A, a preferred embodiment of the GIDS includes an object-oriented database server

component or module 52a, interface components 60a, 60b and client component or module

(i.e., Web-based client applet) 62 or Web-based applet (display and update) 64 in browser

30 client computer 40 and local client server computer 42 (respectively). The database server 52a

is in communication with Web-based client applet 62 or Web-based applet (display and update)

-15-

Docket No. 929.1102

5 64 in browser client computer 40 and local client server computer 42 (respectively) over the

network 46 via or through interface components 60a and 60b. In the preferred embodiment,

the interface systems 60a and 60b observe a conventional CORBA specification or architecture.

An interface system observing CORBA specification or architecture to interface with a

Smalltalk object-oriented database server provides a heterogeneous development and

10 integration environment. Figure 4B is illustrating software system to interface with the

database server 52a in master server computer 44 in a network environment which uses

conventional firewall 70 to achieve information security protecting database server. 52a. As

shown in Figure 4B, yet another preferred embodiment of the GIDS includes database server

52a, interface component 60 and Web-based client applet 62 or Web-based applet (display and

15 update) 64 in browser client computer 40 and local client server computer 42 (respectively).

The database server 52a is in communication with Web-based client applet 62 or Web-based

applet (display and update) 64 in browser client computer 40 and local client server computer

42 (respectively) over the network 46 and through firewall 70 via interface component 60.

Web-based applet (display and update) 64 is in communication with database server 52b.

20 Software system in local client server computer (i.e., local update client server or GIDS

client/server) 42 will be described in more detail below as part of description of the distributed

architecture of the geospatial database system according to the present invention.

Figures 5A, 5B, 6A and 6B, illustrate the software system in Figures 4A and 4B in

more detail respectively, in particular interface system 60. The software system of database

25 system according to the present invention shown in Figures 5A and 5B is essentially the same

as software system of database system according to the present invention when firewall 70 is

used as shown in Figures 6A and 6B, excepting for location of certain system components or

modules, which will be described in more detail below. Therefore, the software system of

database system according to the present invention will be described with reference to Figures

30 5A and 5B. As mentioned above, interface system 60 complies with CORBA specification.

The main component of the CORBA specification is the Object Request Broker (ORB). The

-16-

Docket No. 929.1102

5 ORB is responsible for intercepting an object request, locating the object for handling the

request and invoking the correct method on that object. This often involves converting

parameters from a common data type to a language-specific data type and vice versa (a process

known as marshaling and unmarshaling), as well as returning results from the invoked method.

Any two ORBs that are CORBA compliant can provide communication between their

10 application objects or ORB vendors (e.g., database server 52a and client 62), regardless of

programming language or platform. Therefore, a conventional ORB may be used on or with

the client side, e.g., Web-based client applet 62 or Web-based applet (display and update) 64,

and a conventional ORB may be used on or with the server side, e.g., database server 52a.

The ORBs correspond to interface system 60a, 60b in Figure 4A and interface system 60 in

15 Figure 4A. Therefore, ORBs establish transmission means for communicating object requests

to display, select and query objects interactively between application objects. Referencing

Figure 5A, in the preferred embodiment, VisiBroker ORB 60b by Inprise Corporation, Inc.,

Scotts Valley, California, is used with the Web-based: client applet 62 and GemORB 60a by

GemStone Systems, Inc. is used with the database server or GemStone server application 52a.

20 In particular, VisiBroker ORB is used as a Java ORB and GemORB is a Smalltalk ORB, which

establish communication between a Smalltalk based database server 52a and a Java client applet

62 over network 46, which provides a heterogeneous object-oriented database system

environment. These two vendor ORBs allow communication between applications (i.e.,

database server 52a and Web-based client applet 62) via CORBA's Internet Inter-ORB Protocol

25 (HOP) 86. The use of ORBs, such as GemORB and VisiBroker ORB is transparent to anyone

accessing the applet 62.

With reference to Figure 6A, in the database system according to the present invention

when firewall 70 is used, VisiBroker ORB 60b executes in server computer 44. In Figure 6A,

ORBs 60a and 60b (i.e., interface system) are associated with interface system 60 in Figure

30 4B. A Web-based server applet, such as Java server applet 88, interfaces Web-based client

applet 62 with VisiBroker ORB 60b via network 46 using a conventional network protocol,

-17-

Docket No. 929.1102

5 such as HyperText Transfer Protocol (HTTP). When firewall 70 is used, data is HTTP-

wrapped to get it through the firewall, then unwrapped by the server applet 88 and sent via

standard CORBA HOP to the ODBMS.

Figure 5A illustrates software system in browser client computer 40 in more detail. In

particular, Web-based client applet 62 is embedded in a conventional mark up language

10 document, such as HyperText Markup Language (HTML) document 80, processed by

conventional Web browser software 82, such as Netscape Navigator 4.5 by Netscape

Communications Corporation or Microsoft Internet Explore by Microsoft Corporation. In the

preferred embodiment, in which Web-based client applets 62 and 64 are implemented using

Java, the Web browser software 82 would be a Java-enabled Web browser software. Since the

15 Web-based client applet 62 is implemented at browser level, it is operating system

independent.

With reference to Figure 5A, GemORB 60a establishes a connection to the object

server 52a through CORBA compliant communication. GemORB 60a provides those classes

that represent and implement CORBA. Unlike GemBuilder for Smalltalk 54, a connection via

20 GemORB 60a by client (i.e., GemORB client) 62 does not require an in-depth knowledge of

the system design and implementation of object server 52a. An Interface Definition Language

(IDL) file defines a correct mapping of objects between the client and the server (i.e., Java

client applet 62 and object server 52a). An IDL file also defines operations or methods that

are available for client 62 to invoke on the server 52a. Since GemORB 60a is based on

25 CORBA, all the benefits of interoperability among programming languages and platforms

apply. In ORB based client and server architecture, in contrast to GemBuilder for Smalltalk

54, GemORB client 62 does not reflect server's 52a design. The GemORB client 62

interfacing with object server 52a using VisiBroker ORB 60b and GemORB 60a minimizes

information maintenance and storage by relying on the object server 52a to be a centralized

30 data storage as well as a centralized processing center. The GemORB client 62 requests

information from object server 52a expecting the object server 52a to search and completely

-18-

Docket No. 929.1102

5 process information. The GemORB client 62 will receive fully processed information that can

be readily used without further processing. GemORB clients 62 expect an answer to a

question, while Smalltalk AOI clients 56 expect from the object server 52a those parts that are

needed to solve and derive the solution. Thus, in contrast to Smalltalk AOI client 56,

GemORB client 62 is considered a "thin client" because the implementation of objects are not

10 represented in client 62 (i.e., there are not much processing involved on the client side).

Next the preferred embodiment of Web-based client applet implemented using Java (i.e.

Java client applet Web mapping toolkit) 62 executing in client computer 40 will be.described.

The objective of Java client applet 62 is to have an Internet Java-based mapping client, which

provides display and query capabilities from a set of geographic objects (i.e., geospatial data),

15 such as raster images and vector "features". These geographic objects would be retrieved

from GemStone OODBMS 52a, which acts or functions as a server, and displayed by the Java

client applet 62. In particular, client applet 62 uses conventional core Java classes to draw the

"features" and images on the display screen of the computer. In particular, all drawings occur

within a Java Panel or a Java Frame created within the applet. A Graphics context is created

20 and then the "feature" is drawn within the Graphics context. If the "feature" is a point, then

gc.fillOval function is used to draw a small circle representing the point "feature". If the

"feature" is a line, such as a road, the vg.drawline function is used. If the "feature" is an

area, such as a building, a Polygon is defined with coordinates of the building and then the

gc.fülPolygon function is used.

25 As discussed above, communication between the Java client applet 62 and GemStone

server 52a is accomplished using VisiBroker ORB 60b and GemORB 60a CORBA compliant

ORBs. Figures 5B and 6B show application level protocol 84 to transmit data-driven query

and response messages between Web-based client applet 62 and object server 52a. The

application level protocol 84 is a higher level protocol in relation to HOP 86 in protocol

30 hierarchy between Web-based client applet 62 and object server 52a.

Next, application protocol 84 will be described in more detail. The retrieval of

-19-

Docket No. 929.1102

5 "features" from the server database 52a is based on the AOI concept. Figures 7 and 8 show

display screen of the Java client applet 62 displaying a world map from which a user can select

a location graphically through the use of a rectangle (bounding box). The user also has the

option of entering the coordinates for the AOI manually, or selecting a predetermined region as

shown in Figure 8. From the user input, a bounding box of the AOI is transmitted from client

10 applet 62 via CORBA to Smalltalk server 52a. The server 52a responds with a set of

"database" and "library" names for which data is available in the selected region. As

discussed above, National Imagery and Mapping Agency (NIMA) provides VPF data in.

"databases", and each "database" contains one or more "libraries". As shown in Figure 9, the

user then selects a "database", "library" and "theme" (shown as "coverage" in Figure 9).

15 Once a "database" is selected, all "libraries" for the selected "database" are provided or

displayed. Once a "library" is selected, all "themes" for the selected "library" are provided

or displayed as well as a list of all of the "features" for all of the "themes" is provided or

displayed (as shown in "All features from all coverages" box in Figure 9). Once a particular

"theme" is selected, set of "features" associated with the selected "theme", resulting (as

20 shown in "Features From Selected Coverage box in Figure 9) in a list of "feature" classes

associated with the selected "theme", is returned from the server 52a through another CORBA

request. Finally as shown in Figure 9, the user may select the desired "feature" classes of the

selected AOI and submit a request for them to be displayed by clicking on the Display Selected

Feature(s) button. The "feature" request results in another CORBA communication from

25 applet 62 to server 52a, and server 52a returns to applet 62 a set of all of the requested

"feature" classes, which are located in the given AOL In particular, after clicking on Display

Selected Features in Figure 9, a map (e.g., raster image) appears showing the selected

"features". Fig. 10 shows a display screen for displaying the returned or available "features"

for the selected AOI with reference to a map image. In particular, Figure 10 show a display of

30 the returned "features" with reference to an available raster image associated with the AOL

The "features" that are returned are complex objects with both geometric (coordinate) and

-20-

Docket No. 929.1102

5 attribute information. The applet 62 can then display, select, and query on the returned

"features" as shown in Figure 10.

In particular, in Figures 7, 8, 9 and 10, each menu selection, for example, by

highlighting a menu item (e.g., "database" UVMMOUT in Figure 9) using a pointing device

or keyboard connected to computer 40, causes a query request according to application

10 protocol 84 for available or active geospatial data (i.e., data-driven query over a network) from

Web-based client applet 62 in computer 40 to server 52a, for example, in computer 44. In

particular, each visual screen is a representation of active data. Further, with data-driven

queries, there is no need to know the data-structure to query for information, since any

information associated with an AOI is provided upon query. Therefore, the application

15 protocol 84 establishes data zoom means for querying, selecting and displaying available

geospatial data objects associated with a geographic area of interest from a geospatial object-

oriented database over a network. An advantage of having Web-based client access to an

object-oriented mapping database is to give end users the ability to interactively access and use

geospatial data quickly (i.e., in near real-time or real-time as the case may be) and efficiently.

20 As discussed above, users of geospatial data typically must have separate software installed

into their computer system to view the geospatial data also resident on their own computer

systems, and must obtain the data on CD-ROM or other storage media. The Web-based client

applet 62 allows any user with a computer or device with Web browser technology, such as

Netscape 4.5, to access the GIDS over the Internet and display map data available in the user's

25 area of interest. In addition to display of map objects, the functionality of the Web-based

client applet 62 includes zoom capabilities (i.e., data level zoom) as simple queries, individual

"feature" selection, "attribute" queries, geometrical queries, and updates of "attribute" values.

As shown in Figure 10, after the selected "features" in the user's AOI have been

returned to Web-based client applet 62 from server 52a and displayed by Web-based client

30 applet 62, the user can perform other functions on the selected "features" and to query

additional information and details associated with the selected "features" (e.g., "attributes" of

-21-

Docket No. 929.1102

5 the "feature"). For example, an individual "feature" may be selected (i.e., queried) by

performing a single action of clicking on the "feature" on the map pane, resulting in sending a

query or request to server 52a and receiving a response from server 52a of active data objects,

such as the multimedia information ofthat "feature" and "attributes" ofthat "feature", which

includes information, such as name, scale, and other details (i.e., a simple query). The Web-

10 based client applet 62 then displays multimedia information of that "feature" and "attributes"

ofthat "feature". In Figure 10 the "features" are represented on the map by square symbols,

although other representations, such as graphical icons or NIMA's symbols may also be used.

Further, with reference to Figure 10, the user can change the colors of the "features" to

distinguish between the "feature" classes retrieved and other available "feature" classes. A

15 color key may be shown providing the color, "feature" class, and number of those "features"

in the user's selected AOL The user also may have the ability to change the color of the

background. Zoom capabilities are provided, allowing the user to zoom in, zoom out, or zoom

to a user-specified area in the AOL As discussed above, in contrast to traditional GIS systems,

the zoom function is at the data level rather than at the visual level. Each individual map

20 screen display in the database system of the present invention is a representation of active or

available data.

With reference to Figure 10, a query may also be performed by clicking on the Query

button. This query lists all of the "features" in the map pane and gives the user access to

"attribute" information of each "feature". More advanced queries may also be performed.

25 The advanced query allows users to display new "feature" classes in the AOL The user may

also perform "attribute-level" queries. For example, the user can request for all of the four-

lane roads to be highlighted, or for all buildings that function as government buildings to be

highlighted. Users can also perform geometrical queries, such as "find all buildings that are

greater than 50 feet from the road," or "find all homes that are within 20 meters of the

30 Embassy."

Next the query functions of the present invention will be described in more detail. In

-22-

Docket No. 929.1102

5 particular, the query functions include five types of query. A simple query, displays a list of

"features" on the map. Clicking on one the "features" in the list provides or retrieves from

server 52a information on selected "feature" and will highlight the feature red on the map.

Figure 11 shows a display screen for advanced query. This display screen shows the

selected database and library associated with the AOL A list of "features" is also provided,

10 which upon selection (i.e., query) will appear on the map in light green. The user can choose

more than one, and the last one chosen will appear in light green, otherwise it will be the color

specified on the color code (which can be changed by clicking on the color) that appears-below

the map in Figure 10. The results of the query are shown in the box labeled Results for

Selected Query in Figure 11. If one of these results is clicked or selected, the "attributes" of

15 the "feature" clicked on will appear under Attributes for Selected Results. To do an attribute

level query, the attribute-level query button is clicked or selected. After two queries are

performed in the advance query mode, the Geometrical button may be clicked or selected,

which accommodates finding all "features" that are certain.distances from other "features."

Distances between "features" may be calculated using conventional formulas or routines, for

20 example, by converting latitude-longitude coordinates to screen coordinates and vice versa.

With reference to Figure 12, temporal queries may be performed. In particular,

another data type included in the object-oriented geospatial database of the present invention is

time-varying information associated with data. Therefore, GIDS includes data that has both

spatial and temporal aspects or information. For example, temporal information collected by

25 environmental sensors (i.e., a "feature" or spatial data information) in the AOI allows the user

to query weather conditions in the AOI by inputting the time range and the requirements for

the environmental sensors. This would be a temporal-to-spatial type query. The user is then

presented with a list of times that meet those requirements and from which the user can choose

to view pictures and charts of the results. A query may also be made from spatial-to-temporal

30 for spatial data (i.e., an environmental sensor or "feature" on the map) that has temporal

information.

-23-

Docket No. 929.1102

5 With reference to Figure 13, "attribute" query allows the user to view individual types

of "features" and their properties. For example, by clicking on "Roads" under the Feature

Class pull-down menu and "Median Category" under the Attributes pull-down menu in Figure

13. Such query would color-code the roads on the map as to whether they have medians.

With reference to Figure 14, "distance" query displays a graphical user interface

10 window with a map (which is a data object queried and displayed by Web-based client applet

62). The user may click anywhere on this map and then somewhere else to find the distance

between the two points (i.e., distances between anywhere the user clicks on the screen). ■

Above the second point is the distance of that leg. If the user clicks somewhere else, the

distance between the new point and the point before it is shown above. The total distance of

15 the "journey" (as shown in Figure 14) is shown to the right of the map. A "journey" is the

distance between the first point in the first line segment to the second point in the last line

segment. Similar to geometrical queries discussed above, distances between points selected on

the display screen of the computer displaying the AOI data object (i.e., the map) may be

calculated using conventional formulas or routines, for example, by converting latitude-

20 longitude coordinates to screen coordinates and vice versa. For example, within Web-based

client applet 62, a GreatCircleDistance class calculates the distance between 2 points called

GeoPoints (a latitude and a longitude). The GeoPoints are created in the applet by using the

range of the AOI and the mouse click location. Figure 14A shows a JAVA code section of the

applet that calculates the distance between two points selected on the display screen of the

25 computer on which Web-based applet 62 is executing (e.g., computer 40). With reference to

Figure 14A, "distance" in the code section is the great circle distance between 2 points clicked

on the screen, with gpPointl being the first point and gpPoint2 being the second point of a line

segment formed between two points clicked.

Figure 15 shows a display screen for querying multimedia items relating to the AOI by

30 selecting the multimedia button in Figure 10. Selection of the Preferences button in Figure 10

allows Change Background and Display Text Features functions. Figure 16 shows a display

-24-

Docket No. 929.1102

5 screen for changing the background color of the map or as raster options place the map on top

of an image (i.e., satellite picture of the area or aeronautical chart). Figure 17 shows a display

screen for displaying any text that belongs on the map.

Figure 18A shows a display screen for downloading "libraries", "coverages" or

"features" queried and displayed on the map by selecting the download button in Figure 10.

10 Links to the files may be e-mailed to another over the network 46. Figure 18B shows a display

screen for allowing the user to determine what "feature" types to draw and in what order to

draw them.

Update of "attributes" of a "feature" is also possible with the Web-based client applet

62. The Add Features function, which may also be implemented as an Update Feature

15 function, initiated by clicking on the AddFeature button in Figure 10 allows the user to choose

what "features" to add or what "features" to Update (as the case may be) in the map after the

map has been displayed showing the "features" selected by the user (i.e., after clicking on

Display Selected Features in Figure 9 as discussed above). For example, a newly paved road

could have its "attribute" for surface type updated from "gravel" to "concrete." In a preferred

20 embodiment, this function of the applet would be password protected so that only users with

authorization can change data in the database.

With reference to Figure 10, the user may also perform Internet queries based on the

selected AOL A user can perform an Internet query by selecting the Internet Query button,

and then selecting "Weather", "News", "Yellow Pages", or "Other Maps". For example, if

25 the user decides to find out the weather for the current AOI, upon receiving a request from the

Web-based client applet 62, the server 52a will locate the nearest city to the user's AOI and

will open a web page (using conventional web browsing functions) with that city's local

weather forecast.

Next with reference to Figures 19 through 30, a function of displaying in 3-D

30 "features" in the selected AOI and represented in the raster image of Figure 10 will be

described. The user may obtain a Virtual Reality Modeling Language (VRML) generated 3-D

-25-

Docket No. 929.1102

5 model of the "features" in the current AOL One embodiment of the of the present invention

uses the open standard of VRML 2.0 format for 3-D modeling of land and underwater terrain,

natural "features", and man-made "features". A conventional VRML viewer (3D rendering

software) executed as a browser plug-in on the computer executing a Web browser (e.g.,

computer 40) is used to display VRML outputs generated in server 52a. Other programing

10 languages may be used to render 3D images, such as Java 3D Application Programming

Interface (API). 3-D models are generated using gridded, Triangulated Irregular Network

(TIN), and vector data.

In particular, VRML is a widely used open standard for describing and displaying 3D

scenes or worlds over the Internet. The VRML format is a plain text file format that can be

15 edited with a text editor. However, editing complex scenes containing many polygons would

be extremely tedious without software designed for VRML. All of the point "features", such

as street signs, coniferous trees, park benches, may be created with conventional or

commercial-off-the-shelf VRML software tools or downloaded from VRML repositories on the

Internet. In contrast, in the present invention the area and line "features" are created at run-

20 time by interpreting the objects in server 52a.

Figure 19 illustrates the flow of operations in Web-based client applet 62 to generate

3D model of the "features" in the current AOL The Web-based client applet 62 retrieves for

point "features" information from a digital terrain elevation database at 100. Then at 102, the

Web-based client applet 62 retrieves for area and line "features" two dimensional geospatial

25 data, such as VPF, from server 52a. The Web-based client applet 62 regenerates the

"relative" geometry of the two dimensional data at 104. Then, at 106 the three dimensional

image is generated using the regenerated two dimensional data of 104 and the digital terrain

elevation information of 100. The VRML models will provide additional information about

the AOI by immersing the viewer into and allowing interaction with a virtual world.

30 Next the 3D modeling will be described in more detail. The 3D object "feature"

classes were created in a hierarchy similar to the VPF layout. VPF has 4 basic "feature"

-26-

Docket No. 929.1102

5 categories: point, line, area, and text. Once the 2D "features" are converted to 3D "feature"

objects, they know their state and behavior. For example, once a 2D VPF building "feature"

is converted to a 3D VRML Building object "feature", then the Web-based client applet 62 can

send the VRML Building object a message to output itself in VRML format. The VRML

Building object inherits methods (behavior) and instance variables (state information) from its

10 superclasses VRML Area Feature (area features) and VRML Object (base objects), as shown

in Figure 20.

Each 3D "feature" contains a reference to the objectified 2D "feature", VRML -

coordinates, and derived attributes. The reference to the objectified 2D feature, persisted in the

OODBMS, allows for fast and easy retrieval with all the original "attributes" and location

15 information. The VRML coordinates are calculated from the original latitude and longitude

information stored with the "feature". The derived "attributes" are calculated using the

original "attributes" and specific knowledge of their meanings. For example in Figure 21,

information for rendering the building roofs is derived from the Structure Shape of Roof (SSR)

"attribute". Translating 2D VPF "features" to 3D VRML "features" requires some prior

20 knowledge of the source data. For example, the source VPF data, as stored in object server

52a, was designed to be viewed on a 2D map. Further, the VPF "feature" types and

"attributes" are not always consistent across source databases. Figure 22 shows some of the

mappings of VPF to VRML "features". The mappings are stored in a dictionary class and can

be easily updated. Adding a bridge line to the 3D scene would require adding a key #bridgel

25 and value #VRMLTransLine to the dictionary. Of course, the VPF "feature" type #bridgel

would have to exist in the 2D source database. Therefore, certain code changes to the

VRMLTransLine class specific to bridge line "features" may also be needed.

The coordinate information stored in the 2D objects is in latitude/longitude decimal

degrees. These coordinates must be converted to the VRML coordinate system. The VRML

30 origin is located at the north-west corner of the AOI at elevation of zero. VRML uses a

Cartesian, right-handed, three-dimensional coordinate system. The standard convention is to

-27-

Docket No. 929.1102

5 use meters as the unit of measure with the VRML coordinate system. Transforming a location

of the "feature" to the 3D world is done in several steps given that the AOI has been selected

and the origin is located in the north-west corner of the AOL

1. Calculate meters per degree for latitude and longitude using the AOI latitude

2. Calculate VRML coordinates

10 Area Features:

1. Calculate the lat/lon center of the feature's bounding box

2. Calculate lat/lon distance of feature's center from origin and convert

to VRML map coordinate

3. Calculate the VRML coordinates of the feature's polygon.

15 4. Translate the VRML polygon coordinates about the origin

5. Build feature (generate VRML) about the origin .

6. Translate feature to location from step 2

Line and Point Features:

1. Calculate VRML map coordinates from feature's lat/lon coordinates

20 3. Return VRML node for 3D feature

The above operations are associated with 102 through 106 in Figure 19.

Many of the point "features" are constructed with the VRMLIndexFaceSet node.

"Features" such as fire hydrants and trees require many faces to provide a realistic looking

object. When a VRML scene contains many complex features, rendering speed can drop to

25 levels that cause the viewing to be jerky and disorienting to the user. Rendering speeds of 10

frames per second or less are generally considered to be too slow. The VRML player (i.e.,

software module that generates 3D image according to Figure 19) must render all objects

within the field of view even though they may be far away. The level-of-detail (LOD) node is

one way of optimizing the scene. The LOD node contains center, level, and range fields. The

30 center field defaults to 0.0 0.0 0.0. The level field specifies a list of shape nodes for multiple

definitions of the object. The range field specifies a list of viewer-to-shape distances to tell the

-28-

Docket No. 929.1102

5 browser when to change from one LOD to another. The ranges are listed in increasing values

where the first distance indicates the highest LOD, first node in the level field list. For

example, the LOD node in Figure 23 describes 3 levels of detail for the fire hydrant point

"feature". The first level "FireHydrantl.wri" contains a complex IndexFaceSet node version

that will be displayed when the viewer is within 100 meters. The second level

10 "FireHydrant2.wri" contains a simple Cylinder node version that will be displayed in the 100-

200 meter range. (Figure 24). The third level is an empty Group node that displays no

representation beyond 200 meters. Using LOD nodes provides a way to provide both high

realism and performance.

Some of the most difficult problems in generating realistic VRML scenes come from a

15 lack of complete shape information. VPF building area "features", for example, may not

include enough information to accurately recreate the buildings as they actually appear. For

example, building "attributes" from the VPF data set include height, foot print polygon,

function category, roof type, and a few others. Further, building roofs have one "attribute"

(i.e., SSR). As discussed above, SSR has values of flat or pitched. Therefore, 2D data may

20 not be good choice for 3D rendering but desirable to use because of ample available data.

Although, flat roofs may be easily rendered in 3D, pitched roofs pose more complex problems

because the buildings may be curved or have a complex shape. A solution in the present

invention for constructing building and pitched roofs on a non-rectangular building is to use an

Extrusion node. The Extrusion node has a scale field that defines a list of scale-factor pairs for

25 each point along the spine. The scale values from 1.0 to 0.0 decrease the objects scale with 1.0

leaving the object unchanged. Scale values greater than one increase the size of the object. The

roof Extrusion was scaled from 1.0 to 0.0 giving the roof a gradual slant up to the apex

(Figure 25).

Rendering line "features" such as roads and rivers also presents some problems. Many

30 of the road "features" are sometimes finely segmented into separate "features" in VPF, which

causes problems when converting and rendering in 3D. In particular, conventional 3D

-29-

Docket No. 929.1102

5 rendering software may have difficulty when drawing Extrusions, as used for line "features",

that have single segment spines that are extruded along the ground. The road Extrusions may

not lie flat in such cases. One solution in the present invention is to combine single segment

road "features" with adjacent road "features" that share a node. After selectively processing

and combining the line "features", the roads render flat on the ground. Further, road edges

10 from segment to segment along the spine were smooth out.

Next, with reference to Figures 4A, 4B, 5A, 5B and 26 through 30, software system in

local client server computer 42 will be described. In particular, software system of local client

server computer 42 has the dual function of server and client, according to operations

performed or requested, thereby causing computer 42 to act as a client server in relation to

15 master server computer 44 or as a local server in relation to Browser client computers 40.

For information distribution from a GIDS server, such as master server 44 or local

client server 42, to a GIDS client, such as Browser client 40, both the server database

application 52a and the client database application 52b as shown in Figures 4A, 4B and 26 may

be identical. Further, Web-based applet 64 in local client server computer 42 acting as local

20 server or local client server, and Web-based applet 62 in Browser client 40 may be identical.

A peer-to-peer system configuration for CORBA has been implemented. A well-defined set of

methods in an IDL file is used between systems to query and retrieve objects. Any system can

become a server and client based on the needs.

A role of server and client is based on the role a GIDS system assumes. A GIDS

25 system can be a server to a suite of clients for a certain type of data set. However, the same

GIDB system can be a client server in relation to some other server for another data set. This

capability demonstrates a "smart client pull" information flow, which is described below.

1. A server computer 44 is up and running continuously. Client computers 42 are

on-line as needed.

30 2. Both database server 52a and client server 52b maintain a log. The database server

52a maintains an update server history log 120. The client server 52b maintains a client

-30-

Docket No. 929.1102

5 history log 122. These are represented in Figure 27.

3. A client initiates an update check. When a user logs onto the Gemstone server 52b

(via Browser client 40), a request is sent to the server 52a via ORB-to-ORB communication

(i.e., interface system 60a, 60b or 60 in case firewall 70 exists) to check for any update. A

check, on whether client server 52b needs an update, from server's 52b client history log 122

10 is based on a time stamp and the state of the "feature" in terms of its location and "attributes".

This "smart client pull" allows a background processing to automatically update the

changes from the selected server. Therefore, an interactive processing from the user is not

required to initiate the update. It is also possible to have no user interaction for the actual

update process; the system could be set up to automatically update the changes based on

15 well-defined criteria.

The GIDS server 52a records all updates in server history log 120. The server history

log 120 is maintained as a class variable to VPFDatabase and can be viewed by inspecting

"VPFDatabase historyLog". The format of server history log 120 is shown in Figure 27.

When a "feature" is updated, an instance of a CORBA VectorFeature as defined in the IDL

20 file is created and added to the appropriate feature collection in server history log 120. The

"coverage" date/time stamp in server history log 120 is changed to reflect the date/time that

this "feature" was updated. Thus, the "coverage" date/time stamp reflects the date/time of the

most recent update that has occurred within the "coverage".

When a client server, such as client server 52b, receives updates from another server,

25 such as server 52a, all updates are recorded in client history log 122 as described above

regarding server history log 120. In so doing, this client can then be a server to another client.

Therefore, in addition to recording the updates in server history log 120, a client server also

keeps a record of the updates in a client history log 122. The client history log 122 is

maintained as a class variable to VPFDatabase and can be viewed by inspecting 'VPFDatabase

30 clientHistoryLog'. The format of the client history log 122 is shown in Figure 28. The client

history log 122 records the date/time of the latest update for each "coverage" from another

-31-

Docket No. 929.1102

5 server. It is used to determine whether any updates have occurred since the last time the client

server was updated by another server.

With reference to Figure 29, the application level protocol 130 implementing database

update over the network will be described. When client server 52b in client server 42 logs on,

the system automatically sends a CORBA request to server 52a for a list of available updates.

10 During the login, the server 52b invokes the server-side method getUpdateLogFromServer.

This server-side method checks the server 52a server history log 120 for updates. A list of

strings comprised of "database", "library", and "coverage" names with time stamps, such as

'dbl-libl-covl-01/27/99 13:37:37", is returned to server 52b. The server 52b code then

compares time stamps from the returned list of available updates with time stamps from the

15 client history log 122 to determine if the updates are needed on server 52b. If server 52b does

need to be updated, a window appears (as the case may be) allowing the user to select which

updates to perform, as shown in Figure 30.

The user may choose to update all, some, or none of the "coverages". The items

selected for update are then added to client history log 122. As an item is being added to client

20 history log 122, log 122 is checked to determine if the "coverage" has been updated

previously. If so, the time stamp for that "coverage" is updated, and the server 52a time

stamp is replaced with the previous update time stamp. If not, the server 52a time stamp is

replaced with the word "none". The time stamp replacement is used to prevent the server 52a

from sending back "features" that have already been updated. After the client history log 122

25 is changed, the server-side 52b method getFeaturesToUpdate: updateSelections is invoked

(i.e., a CORBA request is sent to server 52a).

For each item in the updateSelections list, the server 52a finds the collection of updated

"features" for the selected "coverage". If the item in the updateSelections list has "none" in

place of its time stamp, then all of the "features" for this "coverage" are placed in the set of

30 "features" to be updated. Otherwise, the time stamp from the updateSelections list "coverage"

is compared to the time stamp of each "feature" in server 52a. If the "feature" in the server

-32-

Docket No. 929.1102

5 52a was updated at a later date and time than the "coverage" from server 52b, then the

"feature" is added to the set of "features" to be updated. This set of "features" to be updated

is then returned to the server 52b.

When server 52b in client server computer 42 receives the set of "features" to be

updated, each "feature" in the set is updated. If the changeType is ADD, then a new "feature"

10 is created based on the parameters of the VectorFeature. Otherwise, the local client server 52b

feature which matches the VectorFeature to be changed, deleted, or moved must be found in

server 52b. The local client server 52b "feature" is found by using the VectorFeature -

featname and identifier (id). The oldAttributes and oldCoords are then compared with the

local client server 52b feature to verify that the VectorFeature and the local client feature are

15 indeed the same.

There may be two potential sources for conflict in the search for a match. First, a

server 52b may have locally updated the "feature". Since all GIDS systems have a capability

to update "feature" data, a local update could have potentially taken place. A local update has

precedence over the network update. Secondly, a "feature" can be uniquely identified by its

20 "database", "library", "coverage", "feature" class, and id. NIMA distributes its data with an

additional identifier, an edition number. The latest edition will be a superset of all changes

from the previous editions. The changes from one edition to another may coincide with the

changes in client history log .122. However, the changes that take place by NIMA and the

changes via GIDS may be an independent effort. Because the edition numbers might not be

25 maintained by GIDS (assumed to have the latest released edition), there may be a mismatch in

the edition of the server 52a and client server 52b. Therefore, using the VectorFeature

featname and identifier (id) may not uniquely identify a feature. If the VectorFeature cannot

be verified as a match to a local client feature, then the update for the VectorFeature will not

occur.

30 When the "feature" has been validated, the local client server 52b "feature" is then

changed, deleted, or moved based on the parameters of the VectorFeature. As discussed

-33-

Docket No. 929.1102

5 above, client history log 122 will be modified to reflect these updates from server 52a.

The object-oriented geospatial database system (i.e., GIDS) of the present invention

allows users interested in a wide variety of mapping data to access and benefit from the GIDS

over the Internet from any platform using a Web-enabled web browser. This allows the

functionality of more powerful server machines to be exhibited on less capable client machines.

10 This also gives users faster access to mapping data. The migration to a Web-based mapping

client is advantageous by allowing clients with modest computing resources user-friendly

access to state-of-the-art mapping data and software. Given an AOI, the GIDS provides ■

multiple mapping data types for that region to the user for visualization (2D or 3D) and

analysis. Further, with data-driven query capabilities over the network, data dissemination

15 will be near-real-time or real-time (as the case may be) over the network. In summary, the

GIDS fulfills a much needed requirement to provide mapping data of multiple types in an AOI

to user in near-real-time or real-time (as the case may be) over a network, such as WWW.

Current alternative geospatial data systems obtain discrete data via CD-ROM or other

media to then load the data into various software packages to individually generate 3D views,

20 perform GIS queries, and perform other functionalities. There is no unified approach

available.

The many features and advantages of the present invention are apparent from the

detailed specification and thus, it is intended by the appended claims to cover all such features

and advantages of the system which fall within the true spirit and scope of the invention.

25 Further, numerous modifications and changes will readily occur to those skilled in the art from

the disclosure of this invention. It is not desired to limit the invention to the exact construction

and operation illustrated and described; accordingly, suitable modification and equivalents may

be resorted to, as falling within the scope and spirit of the invention.

-34-

Docket No. 929.1102

5 CLAIMS

What is claimed is:

1. A method of distributing in real-time geospatial data over a network connecting

10 together computers, comprising:

designing object models for the geospatial data;

creating an object-oriented database of the geospatial data using the object models;

storing the object-oriented database on a storage unit connected to the network;

specifying an area of interest from a visual image, representing active data objects,

15 displayed on a computer on the network;

querying from the computer over the network data objects in the database associated

with the area of interest;

receiving in the computer over the network data objects in the database associated with

the area of interest; and

20 displaying on a display unit coupled to the computer the data objects.

2. The method of claim 1, wherein in the geospatial data includes temporal

information.

25 3. The method of claim 1, wherein the data objects are displayed in three

dimensional.

4. The method of claim 1, further comprising converting two dimensional data

objects to three dimensional data objects and displaying the converted three dimensional data

30 objects.

-35-

Docket No. 929.1102

5 5. The method of claim 1, wherein the querying is performed using an interface

system conforming to Common Object Request Broker Architecture.

6. A method of distributing in real-time geospatial data over a network connecting

together computers, comprising:

10 designing object models for the geospatial data;

creating an object-oriented database of the geospatial data using the object models;

storing the object-oriented database on a storage unit connected to the network; .

in response to performing a single action, querying from the computer over the network

the database data objects associated with an area of interest;

15 receiving in the computer over the network data objects in the database associated with

the area of interest.

7. The method of distributing in real-time geospatial data over a network according

to claim 6, wherein the querying includes receiving database, library, theme and features as

20 data objects.

8. A method of distributing in real-time data having spatial and temporal

information over a network connecting together computers, comprising:

storing an object-oriented database of the data having spatial and temporal information

25 on a storage unit connected to the network; and

querying data objects in the database using spatial information of the data from a

terminal connected to the network.

9. A method of building and maintaining an object-oriented spatial database from

30 at least two or more data formats, comprising:

instantiating objects of the object-oriented database, using at least two of Vector

-36-

Docket No. 929.1102

5 Product Format (VPF), Raster Product Format (RPF), Text Product Standard (TPS),

Environmental Systems Research Institute (ESRI) shape, Generic Sensor Format (GSF), Naval

Oceanographic Office text (NAVOCEANO), and temporal information databases;

initializing spatial and non-spatial feature data of the object-oriented database; and

spatially indexing data among objects from the at least two VPF, RPF, TPS, ESRI,

10 GSF, NAVOCEANO and temporal information databases into the single, object-oriented

spatial database.

10. A real-time geospatial data distribution system, comprising:

processors, connected to each other via a network, to store in storage units connected to

15 the processors an object-oriented database of data having spatial and temporal information; and

to query data objects in the database using spatial information of the data from another

processor connected to the network.

11. The real-time geospatial data distribution system of claim 10, wherein the spatial

20 information' of the data is represented as a map image and a specified area of interest

corresponding to the map image.

12. A real-time geospatial data distribution system, comprising:

processors, connected to each other via a network, to store in storage units connected to

25 the processors an object-oriented database of data having spatial and temporal information; to

specify an area of interest from a visual image, representing active data objects, displayed on

one of the processors; to query from another processor over the network data objects in the

database associated with the area of interest; to receive in the one processor data objects in the

database associated with the area of interest; and to display the data objects.

30

13. The real-time geospatial data distribution system of claim 12, wherein the

-37-

Docket No. 929.1102

5 processor queries from the database using an interface system to transmit query messages that

conform to Common Object Request Broker Architecture.

14. A real-time geospatial data distribution system, comprising:

processor means, connected to each other via a network, for storing in storage means

10 connected to the processor means an object-oriented database of data having spatial and

temporal information; and for querying data objects in the database using spatial information of

the data from another processor means connected to the network. .

15. The real-time geospatial data distribution system of claim 14, wherein the spatial

15 information of the data is represented as a map image and a specified area of interest

corresponding to the map image.

16. A real-time geospatial data distribution system, comprising:

processor means, connected to each other via a network, for storing in storage means

20 connected to the processor means an object-oriented database of data having spatial and

temporal information; for specifying an area of interest from a visual image, representing

active data objects, displayed on one of the processor means; for querying from another

processor means over the network data objects in the database associated with the area of

interest; for receiving in the one processor means data objects in the database associated with

25 the area of interest; and for displaying the data objects.

17. The real-time geospatial data distribution system of claim 16, wherein the

processor means query from the database using interface means for transmitting query

messages conforming to Common Object Request Broker Architecture.

30

18. Computer programs stored on a computer-readable media to access in real-time

-38-

Docket No. 929.1102

5 geospatial data over a network, comprising:

an object-oriented database server code section to store data having spatial and temporal

information;

a client code section; and

an interface code section in communication with the server code section and the client

10 code section over the network to transmit and receive messages querying the data.

19. The computer programs of claim 18, wherein programming language of the

client code section differs from programming language of the server code section.

15 20. The computer programs of claim 18,. wherein the data includes at least two or

more data formats of Vector Product Format (VPF), Raster Product Format (RPF), Text

Product Standard (TPS), Environmental Systems Research Institute shape format (ESRI),

Generic Sensor Format (GSF), and Naval Oceanographic Office text format (NAVOCEANO).

20 21. The computer programs of claim 18, wherein querying the data includes

updating the data.

22. A real-time geospatial data distribution system, comprising:

processors, connected to each other via a network, to store in a storage unit connected

25 to the processor an object-oriented database of data having spatial and temporal information;

and to query data objects in the database stored in the storage unit of another processor to

update the database in the storage unit of the processor querying data objects, wherein the

processors have dual function of a server or a client-server.

30

-39-

Docket No. 929.1102

5 A DISTRIBUTED OBJECT-ORIENTED GEOSPATIAL INFORMATION

DISTRIBUTION SYSTEM AND METHOD THEREOF

ABSTRACT OF THE DISCLOSURE

A distributed object-oriented geospatial database system and method thereof over the

10 Internet using Web-based technology to perform data-driven queries, such as retrieving,

viewing and updating, geospatial data of the object oriented geospatial database, such as

vector, raster, hypertext and multimedia data, including data types or formats of ESRI shape

files, GSF, oceanographic ASCII text data by NAVOCEANO and geospatial data with

temporal information and supporting 3D display of the geospatial data. The object-oriented

15 geospatial database system is implemented in a heterogeneous object-oriented development and

integration environment through the Common Object Request Broker Architecture (CORBA).

-40-

L
Browser
Client

Site 1

a6 z7

Local
Server

If* Site 2

F16-. I

t/*j*<* U+++S- c**~$~~^ $?^~

Ärea-Of-Interest GemBuilder
' (AOI) Client for

(display & Smalltalk -4>
update)

Gemstone
Database

-F3-
&

$<*

F)^ JL

Databases
VPFDatabase

DNC01 :
DNC17

UVMAP
VMAP

WVSPLUS :
UVMOUT :
VMAAWE--

•
-

"■' ■-. ■

VPFLibrary

Presidio
Oak Knoll
Monterey
Fort Baker

VPFCoverage
MSgja»$««^lg8!8Sg!!igS8ai

Population
Transportation

Cultural
Vegetation

FIG. 3

•/

V6

MA-MC-' £■«*•<^ fewf-mr \eJCc»A lAfJ \ U\ ß «!»*<*• ^'S-few**- fc-'Tf^.i^

0-

52 b

Fl6- VA

M^S+«vf€*-V^^ r.*YH4«r

;-2.b 1
if 2,

6^

-70

FI^. 4B
«70 t?, /■o I A/*If ch-^^.

Fo M

11
J-

</ 5?Ow

Web-based Client
Map Applet

accessible on the
internet

VisiBroker

6oh

-Map display

-Feature Selection

-Attribute Query

-Geometrical Query

Gemstone Server
Map Application
resident on a web

server

CORBA
r^

Area of Interest GemORB

db, lib,

1 <

feat lists it
User's selection(s)

/features

34

Set of/fez
■a * wmJ * mmm » »»»»

y-' FIG. 5 E>

\

iOCK

-V4

c\;«*»»«>- (Tor^-^v e^
5«V\/v*^ C«a»^^t+C^'

P^ 5A

a

Web-based Client
Map Applet

accessible on the
internet

^

-Map display

-Feature Selection

-Attribute Query

-Geometrical Query

Gemstone Server
Map Application
resident on a web

server

GemORB

■~ . — .^«W

&0Gs

FIG. £B

£t<*

— ¥V

csV« <■ tnfCs>y^f^\ es-

&/o*s>J-<~'

\l7/rtC Poe«*»*»«/-»*

\lMA AtfU+

Z

,0

e-
ttTTI»

<7ey«'-«-' £° i^qp-v'i

PllOTOCQl

I"7 f;v*uo*J I

o»?<r

4>'

4V

FI6-. £A

$sf NRL Geospalial Information DataBase (6IDB) - Netscape

File Edit View Go Window Help

EMxj

■■■'>■'■■<■■■;>.:■,,■;

Center Lon: -77.2496 Lat: j34.666 ' with a radius of: 10.002 i lon/lat degrees

Choose Features By: (• NIMA Product

C Product Scale

- ' Submit Coordinates "* ,

Camp LeJeune MOUT £
Camp Geiger
Camp Johnson
Mainside (Industrial) ~
South Korea jjgj

Map is disabled...Choose a region from the list, or manually enter coordinates.

ffi mim

FIG. 7

byii!iitfii.wiwiffiaffljjiiiiii1i.iB^M|f|ltmm9!WM
wmmmmm «mmmmmsssssm^

Center Lat 132.42236 ; Lon: |-77.78471 ; with a radius of:)o.O02 ; Ion/tat degrees

Selected region coordinates are Lat: 0.0 Lon: 0.0 ISn'mg^iiBEfte^lSnsgl

Continent Country Region City

Pre-Defined AOls NIMA Products

ad

Region from DNC01
Region from DNC11
Region from DNC15#1
Region from DNC1S #2
Region from DNC17

DNC01
DNC02
DNC03
DNC04
DNC00

Choose Features By:

C Product Scale

<»■ NIMA Product

^■««ij^-i'^^f^ f?^S5-Jf[«Jpf W^^J

jt

1F\ G. <2

9-

«f NHL Geospalial Infarmalion DataBase (GIDBI - Netscape

File Edit ■ View Go Window Help
nsm

 - A....-A -7"

The AOI has center: -77.2496 34.666 with radius: 0.0020 latiloii degrees.

Select a database, a library, a coverage, and one or more features tobe displayed.

~3.

database Library Coverage

VMAPLV2
VMAPLVD
DNC17

iW TOCTÜT^^^^H Boundaries
Hydrography
Industry
Physiography

'—

hv-vr,™
FFDPROT2
LWDPROT2

!znn(i^Ti{i]ii ^■~—

..El Transportation El
Features From Selected Coverage

Buildings AreasIPopiilation:LEJEUNEUVMMOUTl scale = 50000
Buildings Lines[Population:LEJEUNE:UVMMOUT] scale = 50000
Landmark Points[Population:LEJEUNE:UVMMOUTI scale = 50000
Plaza Areas[PopuIation:LEJEUNEUVMMOUT] scale = 50000

All Features From All Coverages
Buildings AreaslPopiilationlEJEUNEUVMMOUTl scale = 50000
Buildings Lines[Population:LEJEUNE:UVMMOUT] scale = 50000
Cart Track LinesITransportation:LEJEUNE:UVMMOUTl scale = 50000
Fault Unes[Physiography;LEJEUNE:UVMMOUT] scale = 50000
Grassland Areas(Vegetation:LEJEUNE:UVMMOUT] scale = 50000
Ground Areaspr^iograprvLEJEUNEuVMMOUT] scale - 50000

. Display Selected Feature(s) • :

m

d

m /s

FIG. 9

NHL Geospatial Information DataBase (GIDE)

Online help. Email us with questions or comments.Problems?

Addfeatures| Query | Multimedia | Zoom | Preferences | Net Query | Download^ ExiteApplet. | Create lmage|
Sca|e: 16.458672 kilometers Iw 20.279411 Kilometers 11:109724.)

36.27468^:: '' v~'
|jflifr-4liillJ?7'

V'-IT'SM
5
 * >'

Lai: 136.195362 ; Lon: |-75.650696
Select a button to perform the given action.
Click in the list below to change a feature's color.
< black >: Island/Water (except inland)SGround Surface Element[Earth CovEnA17082i -■ I
< blue >: Foreshore(Earth Cover:A1708280:DNC17]A: scale = 80000 (0) ^
< burgundy >: lsland[Earth CovenA1708280:DNC17lP: scale = 80000 (0)

«£ I: ' or1

F\&.

Datasets DNC17[Edition 9: Eastern United States] fr

Scale JA1708375[Currituck Beach Light to Wimbljrj

Features Bottom Characteristics points[Hydrographx

Query Q1: Bottom Characteristics points[Hydrogi|r

Results for Selected Query

201 Bottom Characteristics poinis[Hydrography:,",1TOS^I
198 Bottom Characteristic;; poirits[Hydrography:A1 7083^1
1200 Bottom Characteristics points Hydrography:A1708.

Attributes for Selected Result

Secondary Material Characteristics - Unknown
Material Composition Category -- Unknown j
Material Composition Underlying - Unknown
Underlying Material -- Unknown
FACC Code -- BF010: US-Bottom Characteristics UK-Quality of the I
Physical Surface Characteristics - Soft
Material Composition Secondary - Unknown

M2. JJ
Click here for attribute-leveliquery..' ^

;;^olreliiillj| 'WMffiSjfiiffiffli ^fitei^^l v^SSSiS
UfrSelecteBl r-:.1!ni3ar""'1 ;DlireieFSeBl fÖeleBMi

FIG. 11

IN. Select Time Range 1-lnJxl

rear: >; . Month:"... ' Day: :■'., -lour:

1980 :-■
1981

January
February
March

May
June

A 01 .■A 00
01
02
03

. A

02 ■
Start Time:.-". • 1982 ~~■ . • ■.

1983 v-:-
1984

03
04
05
06 -|: ■i'L ■'','■'>'

04
1985

■

05 ,-v

■■''■.;--C-''-' ■ " V ■ V"
..•:'■.';.•

;:'K-:'■:'■•:■•:
.'■■ 'r^l

1995 ::-
■:■■■. -

January
February
March
April

. . ■■
01 '■A. 00

01
02

'.*
1996 :-.-v:.
1997 '.

02 m
End Time: 03

04
05
06

■ V: ■■ ■§0; 03 M
1999 :;:'■
2000 ~

r;-;.:V
: May h 04

05

>+W:

June
■}\ W

' . ; • ' .■ '. ■: -'.V

l^-rNU^;:/- ■.'•' ':"'.;:'-]'.-:::..:':'< i;MM ^y^M'-i: M

•>-V;^:;.;V:^/;^^
iCöntirüiei

£v-
<■ Exit, f

lilllillll yia¥tm ^■•:/---:—^^:::^

|i^°) Unsigned Java Applet Window;; ' '":■■■ \:'~y'-]'-:'-.-/'---r'.:''\'.-^ '

FIG. 12

N. Altiibule Queiy MZ1

f;'\.:< . wM

"""lisiSPiiSi^iiife

t";i'v

gjfltiili

Feature Class;

Power linesfCultural Landmarks:A1708375:DI

Attribute:.

-Clear Map

Overhead Clearance Category

0

"3

{^Unsigned Java Applet Window

FIG. 13

N. Distance Calculation MZ1

%S

lüiSSil
tSifl

SS

.■•■:-:-•;■ ;r:v----'";;>: v ' :«

■■■ Points:,

-75.78739,36.24763 i A

-75.77605,36.230087
-75.7651,36.207424
-75.760345,36.191708
-75.7545,36.173798
-75.74828,36.1515 El
;■ Reset?:

i'Total Disfance:i;5980.926 meters

ffäF[Unsigned Java Applet'Window

FIG. 14

GeoPoint gpPointl = (GeoPoint)vtrGeopoints.elementAt(i);
GeoPoint gpPoint2 = (GeoPoint)vtrGeopoints.elementAt(i+1);
double distance = gpPointl ,greatCircleDistance(gpPoint2) * 6000 * 0.3048; // returns nautical miles.

multiply by 6000 for feet, multiply by 0.3048 to get meters.

public class GeoPoint{

public double greatCircleDistance(GeoPoint point2) {
double nauticalMiles = O.Of;
double stepl;
double degreesPerRadian = 180.0 / Math.PI;
double nauticalMilesPerDegree = 60.0;
double Iat1 = latlnRadians();
double lonl = lonlnRadians();
double Iat2 = point2.latlnRadians();
double lon2 = point2.lonlnRadians();

// Calculate step 1 in radians
stepl = Math.acos(Math.sin(lat1) * Math.sin(lat2) +

Math.cos(latl) * Math.cos(lat2) * Math.cos(lon1 - lon2));

nauticalMiles = stepl * degreesPerRadian * nauticalMilesPerDegree;
return nauticalMiles;

}

F|£. I if A

CMÖMffleäiäl Zoom Preferences

30 sec Topographie

Bird Migratory Routes

Coastal Relief Model

Coastal Research Amphibious Buggy at FRF

Field Research Facility Area

Main Laboratory at Field Research Facility

NGDC 5 min elevation and bathy merge

: NGDC Sediment Data ■/

.- NGDC Topographic, 5 min .

NOAA Navigation Buoys

NOAA Oceanographic Buoys

NOAA Oceanographic Buoys, 400km ':'.'

NOS Coastal Surveys, 15 sec

NOS Coastal Surveys, 3 sec

Pier at Field Research Facility

■ PoliticaMCountyBoundaries^ ..■■;-:,

Politicalßtate Boundaries ■

Satellite overview with shoreline

Shoreline overlay with satellite Imagery 'V:

TOPEXJERS Sea Surface Temp ' -■■.

Tower at Field Research Facility

USGS Primary Roads

USGS Railroads ' :C.-L i

USGS Topographic, 30 sec

:■ hsugrid.jpg ';.'.;. -.'.-.^': ;.'■;':.;'.^. V-v

: hsupts.jpg '-.-.. ',".;-b-^ :

;;. nagravty.jpg ■■.;.

■•■ video clips

FIG. 15

Ä Raster Options UnT^I

(• Adjust current AOI to scale of raster

C Fit raster to current AOI

Download Cancel

[cgf | Unsigned Java Applet Window

F\<S. \&

FIG. 17

N, Data Download

C(Übririeij

C ■ Coverages,'

<•" Features

EHxj

p" Email File LinkTo: I name@company.net

OK Cancel

j#.. Unsigned Java Applet Window

FIG. 18A

Ä Drawing Options s
DrawOrde : ; . Feature Class: On/Off: Type Option: ■ Color:

. i.1

River lines[lnland Waterways:A1708375:DNC17]L: scale =

Bridge lines[Obstructions:A1708375:DNC17] L: scale = 80C

' Pierlines[Port'Facilities:A1708375:DNCi7]L:scale-8000

Structure lines[Port Facilitles:A1708375:DNC17]L scale =:

... Islandlpoints[Earth:Cover:At708375:DNC1:7]P: scale = 80C

'Foreshore: points[Earth Covert1-708375:DNCi7]P: scale =

Hazard points[Obstructions:A1708375;DNC1.7]P: scale -8

J~ Draw

p".Draw .

p" Draw'

f- Draw

JP" Draw :

r* Draw

p" Draw

]M Line Width

. [71. Line Width

pH Line Width

.;. ffj- Line Width

■_j"

m
■

sir
■i

-
. 1 8

•' 9

■ J10

J11

.1.12
■-..... x"

J13

I.!* _ :zl

| Unsigned Java Applet Window

FIG. 18B

\&o

OX.

/ocy

'*«

\o£

Tl£. n

VRMLObject
VRMLAreaFeature

VPJVfLBuilding
VRMLHydroArea
VRMLVegArea

VRMLLineFeature
VRMLBarrierLine
VRMLHydroLine
VRMLTransLine
VRMLUtilityLine

VRMLPointFeature

Flo-. -2-°

Structure Shape of Roof
Rat

ssr = 41
Pitched

ssr = 42

"F\£-. "2-1

VPF VRML
#bldpopa #VRMLBuilding
#bldinda #VRMLBuüding
#plazaa #VRMLPlazaArea
#lakeresa #VRMLHydroArea
#inshorel #VRMLHydroLine
#watrcrsl #VRMLHydroLine
#roadl #VRMLtransLine
#trackl #VRMLTransLine
#barrierl #VRMLBarrierLine
#polbndl #VRMLBarrierLine
#telel #VRMLUtilityLine
#obstrp , #VRMLPointFeature •
#landmrkp #VRMLPointFeature

F\£. It

LOD (
level [
Inline (url "FireHydrantl.wri")
Inline (url "FireHydrant2.wri")
Group (children []}]

range [100,200]
center 0 0 0)

Fi£-. zs

':.;■•■'■'.;■• K| iMM ■".";■:-•!>■!is,;,, ./."■... tsfejg&ffi

Fl^. *H

IISPNB»

F/tf. ^5

&

$tw*

SERVER

Gemstone
Database

no FIG. 26

CT.TF.NT

Gemstone
Database

C.V, «v% +.

AOI
based
Client

(display
&

update)

64

Dictionary

Databasel
Database2

Dictionary

Libraryl
Library2

Dictionary Array

Coverage 1
Coverage2

Date/Time Stamp

Dictionary

FeatureClassl'
FeatureClass2

Collection

Feature 1
Feature2

FIG. 27

Dictionary

Databasel
Database2

Dictionary Dictionary

Coverage 1
Coverage2

Date/Time Stamp

FIG. 28

TJrjdate Client

GEMSTONE_
SERVER

&
Y?

getUpdateLogFromServe
T

' List of Available Updates

eetFeaturesToUt>date(Selections}i

Features to be Updated I

' - - - v'
FIG. 29

, tfodate Server:

T

Available U pdates Fro m Server

DNC01 -HOI 08280-HYD-03/24/99 10:30:23:
DNC01-AOT08280-ECR-03/24/99 10:41:40;

T

Update All Update Selected I, Cancel Update

FIG. 30

